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Page 55, equation (B3): This  equation,  which is part of the  curve fit for  the  thermodynamic 
propert ies  of equilibrium air, contains two erroneous  numbers. The correct 
form of the  equation is 

The  results  presented  in  the  report  are consistent  with  the  correct  equation. 

page 67, figure 24: The exact solution  shown  in  the  figure is given by equation (43) 
. rather  than  equation (46) as indicated. 
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INVISCID  RADIATING  SHOCK LAYERS ABOUT SPHERES 

TRAVELING AT HYPERBOLIC SPEEDS IN AIR* 

By Richard W. Barnwell 
Langley  Research  Center 

SUMMARY 

Time-dependent  finite-difference  techniques are used  to  obtain  numerical  solutions 
for  the  problem of the  inviscid  flow of radiating  equilibrium air past  spheres  traveling at 
hyperbolic  speeds.  The effects of absorption are included,  and  results are presented  for 
both  gray  and  nongray  absorption  coefficient  models  for  spheres  with  different  radii. It 
is shown  that  the  nondimensional  heat-flux  distributions for the  gray  and  nongray  models 
are similar  and  that  these  distributions are weak  functions of the  radius of the  sphere and 
the  altitude  and  strong  functions of the  flight  velocity. 

INTRODUCTION 

The  problem of radiating flow past blunt  bodies  traveling at hyperbolic  speeds  in air 
has  been  the  subject of intensive  theoretical  investigation  during  the  past  decade. Solu- 
tions  have  been  obtained  for  inviscid  and  viscous  flows  and  for  both  transparent  and 
absorbing  radiation  models.  In  reference 1, Goulard  has  investigated  transparent,  invis- 
cid  flow  fields.  Thomas (ref. 2) has  extended  Goulard's  work  to  include  the  effects of 
absorption  for  cases  for  which  the  absorption  coefficient is small  by replacing  the  absorp- 
tion  integral at a point  in  the  flow  field  with a Taylor series expansion  about  the  point. An 
iterative  numerical  procedure is used by  Howe and  Viegas (ref. 3) to treat viscous flow 
fields  which  emit  and  absorb  thermal  radiation.  Olstad  (refs. 4 and 5) employs  the 
Poincare"  Lighthill-Kuo  method  to  obtain  perturbation  solutions  to  the  inviscid  radiation 
problem.  Callis  (ref. 6)  solves  this  same  problem  with a time-dependent  finite-difference 
technique of second-order  accuracy.  In all the  references  cited,  modified  one-dimensional 
flow fields are considered,  and  the  solutions  which are obtained are applicable  in  the 
vicinity of the  stagnation  streamline. 

" . ~ ~~ -~ - " ". ~ 
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An earlier  version of part of the  analysis  which is presented  in  this  paper was used 
as a thesis  in  partial  fulfillment of the  requirements for the  degree of Doctor of Philosophy 
in  Engineering  Mechanics,  Virginia  Polytechnic  Institute,  Blacksburg,  Virginia, June 1968. 



Solutions  which are not restricted  to  the  stagnation  streamline are presented  in 
references 7 to  10. In  references 7 and 8, Hoshizaki  and  Wilson  use  an  integral  method 
to  obtain  solutions  for  inviscid  and  viscous  flows,  respectively,  for a transparent radia- 
tion  model.  These  authors  extend  their  work  to  include  the  effects of absorption  in ref- 
erence 9. Cheng  and  Vincenti  (ref.  10) use  an  inverse  method  to  treat  the  problem of 
inviscid  flow  past  blunt  bodies  and  consider  the effects of absorption. 

The  frequency  dependence of the  absorption  coefficient  for  high-temperature air is 
considered  in  references 4, 5, 6, 9, and 11. Hoshizaki  and  Wilson  (ref. 9) perform  the 
integration  with  respect  to  frequency  in  the  radiative  heat-transfer  term of the  energy 
equation  numerically,  whereas  Olstad (refs. 4 and 5) and  Smith  and  Hassan (ref. 11) use 
step  functions  to  approximate  the  frequency-dependent  absorption  coefficient  and  perform 
the  integration  with  respect  to  frequency  analytically.  The  step-function  absorption  coef- 
ficient  models-are  constructed by dividing  the  spectrum  into  intervals  and  using  mean 
values of the  absorption  coefficients  for  each  interval. 

In  the  present  paper,  the  computation of the  radiating  shock  layer  about a sphere is 
made by using a time-dependent  method of first-order  accuracy.  This  method is a "dis- 
crete shock"  method  which is similar  to  that  of Moretti  and  Abbett  (ref. 12). The  shock 
wave is treated as a boundary at which  the  flow  properties  are  discontinuous.  With  time- 
dependent,  finite-difference  methods,  one  can  avoid  the  assumption of functional  forms 
for   some of the  normal flow property  profiles as is done  with  the  integral  method  which 
is used  in  references 7, 8, and 9. Another  advantage is that  time-dependent  methods  can 
be  used  to  solve  the  direct  blunt-body  radiation  problem as opposed  to  the  inverse  prob- 
lem,  which is solved  in  reference 10. 

The  problem of time-dependent  supersonic flow  about a blunt body is treated as an 
initial-value  problem. By starting  with  an  initial  approximate  solution,  the  solution is 
determined at successive  time  steps  until  the  steady  solution is approached  asymptoti- 
cally.  The  inclusion of the  partial  derivatives  with  respect  to  time  in  the  equations  for 
fluid flow makes  those  equations  hyperbolic at all points  in  the flow field  including  regions 
where  the  flow is subsonic.  This  feature  makes  the  time-dependent  approach an attrac- 
tive  one  for  computing  supersonic flow past  blunt  bodies.  The  governing  partial  differen- 
tial equations are approximated  with  finite-difference  equations  which are solved  with 
forward-marching  techniques. 

The  time-dependent  approach is particularly  applicable  to  the  problem of radiating 
flow with  absorption  because it provides a straightforward  means of solving  the  energy 
equation,  which is an  integro-differential  equation.  When  determining  the  solution  at a 
new time  step,  the known solution at the  previous  step is used  to  evaluate  the  integral 
term. 
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As was indicated  earlier,  the  present  paper treats the  inviscid flow fields  about 
spheres  traveling at hyperbolic  velocities at high altitudes  in  the  earth's  atmosphere. 
Spheres  with  several  different  radii are treated,  and both  frequency-dependent  and 
frequency-independent  absorption  coefficient  models a r e  used.  The  frequency-dependent 
absorption  coefficient is approximated  with a step-function  model  which is similar   to  
those  used  in  references 4, 5, 6 ,  and 11. It is assumed  that  the  gas  in  the  free  stream 
neither  emits  nor  absorbs  thermal  energy and that  the body surface  neither  emits  nor 
reflects. For the  purpose of calculating  the  absorption  integral  in  the  energy  equation, 
the  radiating  shock  layer is treated as an  infinite  slab  with  the  same width as the  local- 
shock-layer  thickness.  The  thermodynamic  state of the  gas is described by curve fits of 
previously  calculated  equilibrium air data. 

SYMBOLS 

Ai,Bi,Ci,Di,Ei,Fi  quantities  defined by equations  (10) 

integral  defined by equation  (E9) 

optical  depth  defined by equation (40) 

speed of sound 

reference  speed of sound, 331.8 m/sec 

exponents  expressing power -law variation of absorption  coefficient  with 
density  and  temperature,  respectively 

frequency  integral of Planck  function  defined by equation  (E8) 

Planck  function 

constant  used  in  equation  (37) 

quantity  defined by equation (E26) 

speed of light 

exponent  expressing  power-law  variation of shock-layer  thickness  with cos 0 
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E  total  energy  per  unit  mass 

En(z)  exponential  integral  defined by equation (39) 

e internal  energy  per  unit  mass 

F(z)  function  defined  by  equation (43) 

Fk,1;2 + $k + j-) hypergeometric series defined by equation  (E28) 
N 

scale  constant  used  in  equation  (E16) 

constant  defined by equation  (E18) 

exponent  expressing  power-law  variation of Planck  function  with hc/kXT 

total  enthalpy  per  unit  mass 

static enthalpy  per  unit  mass,  also  Planck  constant 

scale constant  for r] coordinate 

altitude 

radiation  intensity 

radiation  intensity  away  from body surface  and  toward it, respectively 

shock  curvature 

Boltzmann  constant 

spatial  position, r = rb + (1  - 1 ) A r  and Y = (1  - 1)AY 

spatial  position, e = (m - 1)AO and 0 = (m - 1)AO 

integers 

quantity  defined by equation  (E25) 



P 

PO 

Q 

QN 

QV 

qV 

R 

R O  

r 

S 

T 

TO 

t 

pressure 

reference  pressure,  1.013 X l o5  newtons/m2 

total  radiative  heat  input  per  unit  volume  and  time  defined by equation (D15) 

quantity  defined  by  equation (E5) 

monochromatic  radiative  heat  input  per  unit  volume  and  time  defined by 
equation (D9) 

total  radiative  heat  flux  defined by equation (D8) 

monochromatic  radiative  heat  flux  defined by equation (D3) 

perpendicular  distance  from axis of symmetry  to a point  in  flow  field,  also 
gas  constant  for air, 2.870 X lo2 joules/kg-OK 

quantity  defined by equation (B7) 

exponents  expressing  power-law  variation of temperature  with  pressure  and 
density,  respectively 

radial  coordinate 

entropy 

temperature 

reference  temperature, 273.2O K 

time 

velocity  components  normal  and  parallel  to  shock  wave,  respectively 

velocity  components  normal  and  parallel  to body surface,  respectively 

magnitude of free-stream  velocity 
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W component of shock  velocity  normal  to body surface  defined by equation (14) 

X Cartesian  coordinate,  also  Goulard  coordinate 

Y nondimensional  coordinate  normal  to body surface  defined by equation ( l l c )  

Y coordinate  normal  to body surface, also Cartesian  coordinate 

Y nondimensional  coordinate  defined by equation (E7) 
- 

z length  along  line of propagation of radiation 

%Q! absorption  coefficient 

@N 

aP 

mean  absorption  coefficient  for  interval uN I u 5 u 

Planck  mean  absorption  coefficient 

N+l 

P acute  angle  between  normal  to  shock  wave  and  free-stream  direction 

r energy  depletion  parameter  defined by equation (46) 

rl 

Y ratio of specific  heats 

energy  depletion  parameter  defined by equation (E22) 

Y 

Y ratio of static  enthalpy  to  internal  energy 

At,Ar,Ae mesh  spacings  for  time t and coordinates r and 0 ,  respectively 

Ar,AY,AO mesh  spacings  for  time ?- and coordinates Y and 0, respectively 

6 shock-layer  thickness  along a line  normal  to body surface  defined by 
equation (12) 

6A shock-detachment  distance  for  adiabatic  flow 

E acute  angle  between  normals  to  shock  wave  and body surface 
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I 

quantity  defined  by  equation  (E23) 

coordinate  along  shock  wave 

polar  angle 

wavelength 

quantity  defined by equations (9) 

frequency 

discrete  frequency 

coordinate  normal  to  shock  wave 

density 

reference  density, 1.292 kg/m3 

Stefan-Boltzmann  constant 

time 

angle  between  direction of propagation of radiation and y-axis 

azimuthal  angle 

solid  angle 

Subscripts: 

b at body surface 

A 

j ,j at base point of bicharacteristic 

max  maximum 

S immediately  behind  shock  wave 
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st at stagnation  point 

W at body  point 

00 in free s t ream 

Superscript: 

k  number of time  steps, t = k At and T = k AT 

ANALYSIS 

The  procedures  which are used  to  solve  the  equations  for  time-dependent,  inviscid 
flow at points  within  the  shock  layer,  on  the  shock  wave,  and  on  the body surface are 
described  herein.  In  addition,  discussions of the  thermodynamic  and  absorption  coeffi- 
cient  models  for  high-temperature air are presented,  the  method  for  evaluating  the  inte- 
gral  terms  in  the  energy  equation is given,  and  the  calculation of the  starting  solution is 
discussed. It should be noted  that  results  for  steady  flow are obtained after many time 
steps when the  time  derivatives,  which  approach  zero  asymptotically, are sufficiently 
small .  

Calculations  at  Points  Within Shock Layer 

Governing  equations.-  The  natural  coordinate  system  for  formulating  the  problem of 
axisymmetric flow past a sphere is a spherical  polar  system  with its origin  located at the 
center of the  sphere  and  its axis alined  with  the  direction of flow in  the  free  stream. 
When written  in  this  coordinate  system  and  in  conservation  form  the  governing  equations 
are : 

~~ 

Continuity: 

Radial  momentum : 

Tangential  momentum : 
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Energy: 

In  these  equations,  the  radial  and  tangential  velocity  components,  the  density,  and  pres- 
s u r e  are represented by u, v, p, and p, respectively.  The  quantities  E  and  H are 
the  total  energy  and  enthalpy,  respectively,  and are given by 

E = e + -(u 1 2  + v2) 
2 

H = h + 1(u2  + v2) 
2 

where e and  h are the  internal  energy  and  static  enthalpy,  respectively.  The  quan- 
tity Q in  equation (4) is the  net  heat  input to a volume  element  due  to  the  emission  and 
absorption of thermal  energy and is discussed  in a subsequent  section. 

Equations (1) to  (4) are indeterminate  on  the axis where  the  tangential  component of 
velocity  v  vanishes  and  cot 8 is infinite.  The  indeterminate  forms  can  be  evaluated 
with  the  aid of 1'Hospital's  rule  to  yield  the  following  equations: 

Continuity: 

Radial  momentum: 

Energy: 

The  tangential  momentum  equation is not needed at 8 = 0 because the tangential  velocity 
component is zero on  the axis. 

Equations (1) to  (7) can be written  in  index  notation as : 
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where 

and  where 

A1 = p r  

B1 = pur 

c1 = pv 

Dl = pu 

El  = pv 

F1 = 0 

A3 = pvr 

B3 = puvr 

c3 = p + pv2 

D3 = ~ P U V  

E3 = PV 2 

p = o  

p = 1  

A2 = pur 

B2 = (p + pu2)r 

c2 = puv 

D2 = -p + p(u2 - 4 )  

F2 = 0 

A4 = p e + -(u + v2) r [ t 2  1 

F3 = 0 F4 = Qr 

New independent variables are introduced as follows: 

7 =  t 

10 



o =  e 

where 

The  quantity rs(e,t) is the  radial  coordinate of the  shock  wave  for  particular  values of 
8 and t, and r b  is the  radius of the  sphere.  Equations (8) are   wri t ten  in   terms of 
these  independent  variables as 

+ Di + (1 - p)Ei  cot 0 = Fi (i = 1,2,3,4) (13) 

where  the  component of the  shock  velocity  normal  to  the body is given by 

The  partial  differential  equations (13) are approximated  with  finite-difference  equa- 
tions at points  within  the  shock  layer.  These  finite-difference  equations  and  the known 
solution at t ime T are  used  to  determine the density p, the  internal  energy  e,  and  the 
velocity  components  u  and  v at t ime T + A r .  The  pressure p  must  be  determined 
from  an  equation of state as a function of p and e.  The  static  enthalpy  h is defined 
by the  equation 

h = e + E  
P 

In  order to determine  the  equation of state, it is convenient  to  define  the  thermody- 
namic  function y(p,e) as the  ratio of static  enthalpy  to  internal  energy: 

= e h 

By use of equations (15) and (16), the  required  equation of state is given by 

P = P(y” - 1) (17) 
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It follows  that 

I 

Equations (17) and (18) are   the  same as the  calorically  perfect  gas  relations when 7 is 
replaced by the  ratio of specific  heats y. However,  equations (17) and (18) a r e   t r u e  for 
all gases,   regardless of the  thermodynamic  state. 

Method of solution.-  Let k, I ,  and  m  be  the  grid  indices  for  the T, Y, and 
0 coordinates,  respectively.  The  computational  grid  associated  with  these  coordinates 
is shown in figure 1. As the  figure  indicates, a staggered  grid is used. 

0 Poin t s   where   f l ow is computed  when 

t ime   i ndex  k is e v e n  

0 Poin t s   where   f l ow  i s   computed   when  

time index  k is odd 

1 = 5  4 3 2 1 

Figure 1.- Floating coordinate system. 
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The  partial  derivatives  8Ai/8~ in equations (13) are replaced by forward differ- 
ences as follows: 

These  difference  expressions  contain  "artificial  viscosity"  error  terms of first order  
which serve  to  stabilize  the  numerical  calculations.  The  partial  derivatives  8Bi/8Y 
and 8Ci/80 at the  point (k,l,m) are replaced by central  differences of the  form 

The  difference  expressions  for  the  derivatives 
those  for 8Bi/8Y. 

Since a staggered  grid is used,  the flow properties  are not known at the  point 
(k,Z,m). Therefore,  the  undifferentiated  terms Di and  Ei  are  replaced by the 
averages of the  values of these  quantities at the  neighboring  grid  points: 

The  terms Fi are all zero  except F4 which is equal  to rQ. The  treatment of this 
te rm is discussed in  the  section  "Radiative  Transfer."  The  expressions  in  equations (19), 
(20), and (21) and  the  values of the  terms Fi are substituted  into  equations (13), and the 
quantities 6, W, and 86/80  a r e  evaluated at the  point (k,Z,m). All  the terms  in   the 

k+ 1 
resulting  finite-difference  equations  have a time  index  k  except the quantities (Ai) 

z,m' 
Therefore,  values  for Ai t e rms  at time  k + 1 can  be  evaluated if the  solution at 
t ime k is known. 
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The  velocity  components uk+' and vy:, the  density py;, and  the  internal 
I,m 

energy ek+' are determined  from  the  quantities (Ai) . Then  the  function y 
k+ 1 &+l is 

evaluated  in t e rms  of p and k+l The  method by which this is done is discussed 

later in  the  section  "Thermodynamic  Models."  Values  for  the  pressure pk+' and  the 

static  enthalpy hk+' are determined  from  equations (17) and  (18), respectively. 

I,m  I,m 2,m 
k+ 1 
1,m 

I,m 

I,m 

It is seen  from  equations (10) that  the radial coordinate r must  be known at the 
point 

Since 

(k+l, I,  m).  The 

the  shock-layer 

equation for r is 

rk+l = rb + ~6~ k+ 1 
I,m 

thickness 6:' appears on the  right-hand  side of this  equation, 
the  solution  at  the  shock at time  k + 1 must  be  determined first. 

The  solutions at the  boundary 0 = Om, which lies downstream of both the  sonic 
line  and  limiting  characteristic are determined by extrapolating  the flow properties  lin- 
early.   The  errors  incurred by the  extrapolation  do  not  affect  the  solution  upstream of the 
boundary  because  the flow in  the  vicinity of the  boundary is supersonic. 

Stability  analysis.-  A  linear  stability  analysis of the  finite-difference  equations (13) 
has  been  performed by using  the  method of Von Neumann (ref. 13). The  purpose of the 
resulting  stability  conditions is to  insure  that  the  magnitudes of the  infinitesimal  errors 
which are introduced at a given  time  step do  not  increase  with  time. Von Neumann  showed 
that  these  errors  are  wavelike  in  nature. Although the  quantities of interest   are  the  sums 
of the  errors  affecting  the  various flow properties,  the  stability  conditions are developed 
by considering  the  growth of only  one error   term  for   each flow property. 

The Von Neumann  conditions  for  the  finite-difference  equations  employed  in  this 
report are 

-5- AT fi 6 
A Y -  2 Iu - Y W I  + a 

where a is the  speed of sound.  The  derivation of these  inequalities is given  in refer- 
ence 14. It should  be  noted  that  these  conditions are more  restrictive  than  the 
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Courant-Friedrichs-Lewy  conditions  (ref. 15), which  do  not  include  the  factor \T2/2 on 
the  right-hand  side. 

Calculations at Points on the Shock  Wave 

Governing  equations.- An orthogonal  curvilinear  coordinate  system r],( is estab- 
lished at the  shock  wave as shown in  figure 2, where r] and 5 a r e  the  distances  along 
and  normal  to  the  shock,  respectively, 
at t ime T + AT. The  velocity  com- 
ponents  in  the 5 and r ]  directions 
a r e  U and V, respectively.  The 
angle E between  the  normal  to  the 
shock  and  the  radial  line  through  the 
point  being  computed is determined 
from  the  relation 

The  equations  which  must  be 
solved at the  shock  wave are the 
Rankine-Hugoniot relations  and  one 
characteristic  compatibility  relation. 
If the  subscripts 00 and s repre-  
sent  quantities  in  the  free  stream and 
immediately  behind  the  shock,  respec- 
tively,  the  Rankine-Hugoniot  relations 
can  be  written as 

/I I 

Shock A 

Figure 2.- Shock-oriented  coordinate system. 

- 
PS(% - &) = Prn(._ - x) cos E 

W 2 2 
Ps + P S k S  - G) = Prn+ Prn(% - &) 

ys ps l( c L )  - y m -  1 P, 7 s  - - 1ps  2  2 l( co: J2  

} (2 3) - 
2 7, P, + - u s - -  --- +-urn--  " 

vs = v, J 
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The  compatibility  relation,  which is a linear  combination of the  governing  partial  differ - 
ential  equations (ref. 16), is given by the  equation 

* + p a - =   d 7  dU d 7   - - ( p a V z + p a 2 E + V 2 )  hB I ar] ar ar] - L k a 2 U ( K + h  hr] +pa2Vh VR - c o s 0  1 

where  the  angle  between  the  normal  to  the  shock wave  and the  free-stream  direction p, 
the  curvature of the  shock  wave K, and the  scale  factor  for  the r ]  coordinate hq a r e  
given by the  equations 

The  perpendicular  distance  from  the axis to  the  point q,t is given by the  equation 

where r ]  = 0 at the axis. Two of the  undifferentiated  terms  on  the  right-hand  side of 
equation (24) are  indeterminate  on  the axis where  sin p, V, and R a r e  equal  to  zero. 
With the  aid of 1'Hospital's  rule,  the  compatibility  relation on the axis can  be  written as 

It should  be  noted  that  the  form of the  energy  equation  which is used  to  obtain  the 
compatibility  relation is written as 

L "I 

where  the  speed of sound is given  by  the  equation 
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Equations (26) and (27) are derived  in  appendix A. 

The  compatibility  relation is integrated  along  the  line of intersection of the 
E,T plane  which passes  through  the  shock  point at t ime T + AT and the characteristic 
surface which passes  through  the  shock  point  and  intersects  the q, 5 plane  behind  the 
shock  wave at t ime T .  This  line of intersection  has  the  slope 

in  the 5, T plane. 

Method of solution.-  The  solution is known completely at time T and at all pre-  
vious  times. A first approximation  to  the  shock-wave  geometry at t ime T + AT is 

~ ~ 

made by using  the  relation 

and  the  component of the  shock  velocity  normal  to  the body is approximated by 

W ( ~ , T  + AT) = W ( O , T  - AT) 

The  derivative 86 /80  is computed  from  the  equation 

and  the  angle E is determined  from  equation (22). Tentative  values  for  the  velocity 
components Us and Vs and  the  equilibrium  thermodynamic  properties p s ,  ps, e,, 
hs, as, and ys  at time T + AT are obtained by using  the  approximate  value for 
W(O,T + AT) and  iterating  the  Rankine-Hugoniot  relations (23), equations (18) and (27), 
and  the  equation  for  y(p,e). 

At this  point,  the  location of the  line  along which  the  compatibility  relation is to  be 
integrated is determined.  The  slope of this  line, which lies in the <,T plane  and  passes 
through  the  point s, is given  by  equation (28). The E,T plane is shown in  figure 3. 
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Figure 3.- Location of line  along which compatibility  equation i s  integrated. 

The first estimate of the location of the  point j where the line  intersects the q,< plane 
at t ime T is obtained by using the relation 

ej = -(U + a)s AT 

where 5 is equal  to  zero at the shock,  and its positive  direction is outward  into the free 
stream, as shown in  figure 3. The  mesh  spacing AT is always  positive. The values of 
the flow properties at point j are determined by interpolation,  and 5 is computed 
again  from the relation 

j 

c j =  --P+a),+ ( U + a )  1 
2 

so that a new location  for  point j is determined.  This  process is repeated until the 
successive  values  for 5 converge. 

j 
The compatibility  relation  given  by  equation (24) or equation (25) is integrated 

f rom point j to  point s. In order  to perform this integration, the right-hand side of 
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equation (24) or (25) and  the  term  pa on the  left-hand  side are evaluated at s and j, 
and  the  results  are  averaged.  The  integrated  compatibility  relation,  the Rankine-Hugoniot 
relations,  and  the  thermodynamic  relations are solved  iteratively  for  the  velocity  com- 
ponents,  the  thermodynamic  properties,  and  the  shock  velocity  component W at the 
shock  point at time T + AT. 

The  next  approximation of the  shock-wave  geometry at time T + AT is determined 
by using  the  relation 

The  process given by equations (29) to (30) is repeated  until  the  successive  solutions 
converge. 

Calculations at Points on Body Surface 

Governing  equations.-  The  transient  spherical  polar  coordinate  system r,B,t is 
used  to  obtain  solutions at the  surface of the  sphere.  The  differential  equations which a r e  
solved are  the  energy  equation (26), the  tangential  momentum  equation,  and a character- 
istic  compatibility  relation. Both the  energy  equation  and  the  momentum  equation a r e  
integrated  along  the body streamline, which has  the  slope 

" 

in  the O , t  surface.  Equation (26) is used  in  the  form  given,  whereas  the  momentum 
equation is used  in  the  form 

The  compatibility  relation is integrated  along  the  line of intersection of the r,t plane 
( 0  = Constant)  which passes  through  the body point  where  the  flow is being  computed at 
time t + At and the characteristic  surface which passes  through  the body  point  and 
intersects  the r,B plane  within  the  shock  layer at time t. This  line of intersection  has 
the  slope 

in  the r,t plane.  The  characteristic  compatibility  relation  to  be  used at the body sur- 
face is 
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for  points off the axis of symmetry and 

at the  stagnation  point. 

Method of solution.-  A first approximation  to  the  solution at time r + A r  (which 
is the  same as t + A t  since r = t) is obtained by integrating  equations (13), the  partial 
differential  equations  which are used at points  in  the flow field.  Let k, 1 = 1, and  m 
be  the  indices of the body point w for  the r, Y, and 0 coordinates,  respectively. 
The  partial  derivatives a A i / a ~  and  aBi/aY  in  equations (13) are approximated by 
finite-difference  expressions of the  form 

and 

respectively.  Since  Y = 0 at the body surface,  the  partial  derivatives  aAi/aY and 
8Ci/aY  need not be  evaluated.  The  derivatives  aCi/a0 are determined  from  equa- 
tion (2Ob); and  the  quantities  Di  and  Ei a r e  evaluated at the  points k, 1 = l, 
m + 1, and k, I = 1, m - 1, and  the  results are averaged. 

The  location of the  line  along  which  the  compatibility  relation is integrated is deter- 
mined  from  equation (33). The first estimate of the  location of the point j where  this 
line  intersects  the r, 9 plane at time t is obtained  from  the  relation 
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The  values of the flow properties at point j are determined by interpolation,  and rj 
is computed  again  from  the  equation 

This  process is repeated until the  successive  values  for r converge.  The  compatibility 
relation  given by equation (34) or equation (35) is integrated  from  point j to  point w 
in  the  same  manner as described  for  the  shock wave. Because  u = 0 at the  surface, 
the  integration of the  compatibility  relation  yields  the new value  for  the  pressure g, at 
time t + At. 

j 

The  location of the  line  along  which  the  energy  equation (26) and the  tangential 
momentum  equation (32) are  integrated is determined  from  equation (31). When the  time 
index k for  the  time  plane t + At is even,  this  line  extends  from  the body  point  w 
at t ime t + At to a body  point 3 at time t - At;  when k is odd, the  line  extends  from 
point w to a body point j at t ime t. In other  words,  point 3 is always  located on a 
time  plane  with  an  even  index k. It can  be  seen  from  figure 1 that  the set of body points 
at which  solutions are obtained when k is even  includes  the  stagnation  point.  This  pro- 
cedure of integrating  equations (26) and (32) over one  and two time  intervals  alternately 
has  been found to yield  better  results  than  those which were  obtained by always  integrating 
over  one  time  interval.  The first estimate of the  location of point 3 is determined  from 
the  relation 

or 

depending upon whether  k is even or  odd, respectively.  Successive  estimates of 8? 
3 

are determined  from  the  relation 

("w + v;) At e? = ,gw - 
J 'b 

or  

1 (vw + v* 
e?.= ew - - At 

3 'b 

2 1  



\ 

The  integration of equations (26) and (32) f rom point to point w is accomplished 
by evaluating  the  right-hand  sides of these  equations at these  points  and  averaging  the 
results.  The  term a2 on  the  left-hand  side of equation (26) is evaluated  in  the  same 
manner.  Equation (26) yields  the new value of the  density pw since  the new value  for 
pw is known, and  equation (32) yields  the  tangential  velocity vw. 

The  process  described,  starting  with  equation (36), is repeated  until  the  successive 
solutions  converge. 

Thermodynamic  Models 

Two thermodynamic  models are used  in  this  report:  an  equilibrium air model  and 
a perfect  gas  model. Both models  use  equations (17) and (18) to  determine  the  pres- 
su re  p  and  enthalpy  h as functions of the  density p and  internal  energy e. The 
ratio 7 = h/e is assumed  to  be  constant for the  perfect  gas  model,  whereas  curve fits 
are used  to  evaluate it for  the  equilibrium air model. 

1.4 
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(a)  Ratio of enthalpy  to  internal  energy. Data from  references 17 and 18. 

Figure 4.- Curve  f i ts of equi l ibr ium  air  thermodynamic data. 

22 



” 

Equilibrium air model.- A curve f i t  is used  to  describe  the  variation of the  ratio 
7 = h/e as a function of p/po and  e/RTo as shown in  figure 4(a).  The  data  used  to 
construct  this fit were obtained  from  the results of Allison (ref. 17) and  Browne (ref. 18). 
It can  be  seen  from  the  figure  that  for a given  density,  the  variation of 7 with  the  loga- 
rithm of e/RTo  can  be  characterized by straight-line  segments  over  most of the  range 
1 6 e/RTo 5 1500. Transitions  from  one  straight-line  segment  to  another  occur for values 
of e/RTo  near 6, 25, 70, and 400. The  figure  shows  that  the  transition  in  the  vicinity 
of e/RTo = 25 occurs  rapidly,  and it is assumed  in this report  that  this  transition  can 
be  approximated by an  abrupt  change  from  one  straight-line  segment  to  another.  The 
same  assumption is made  with  respect  to  the  transition  in  the  vicinity of e/RTo = 6, 
although  this  transition  does not occur as quickly.  Transitions  in  the  vicinity of 
e/RTo = 70 and 400 are smooth,  and  they a r e  approximated  with odd transition  functions 
(ref. 19). The  curve f i t  for 7 which is used  in  this  report is given by equations  (Bl) 
to (B4). 

The  curve fit which is used  to  determine  the  temperature  in  terms of the  pressure 
and  density is compared with the  data of Browne  in  figure 4(b). This  property is needed 

10-3 

(b) Thermal  equation of state. Data from  reference 18. 

Figure 4.- Continued. 
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only  in  connection  with  the  computation of the  heat  flux  and  the  divergence of the  heat  flux 
for  the  radiation  problem, which are discussed  in a subsequent  section.  The  ranges of 
interest  for  the  calculations  in  this  report are 

8 000' K 5 T 5 16 000' K 

The  data of Allison  and  Browne show that  for  sufficiently  large  values of the  temperature 
and small  values of the  density  within  this  range,  the  temperature  can  be  predicted  very 
accurately  with a power-law fit of the  form  T a p.432/p-392.  Similarly, for  sufficiently 
emall  values of the  temperature and large  values of the  density,  the  temperature  can  be 
predicted with a power-law fit of the  form  T p.810/p.794. In this  report,  an  even  tran- 
sition  function  (ref. 19) is used  to  effect  the  change  from  one  power-law fit to  the  other. 
The  expressions which a r e  used  in  this  report  to  determine  the  temperature  in  terms of 
the  pressure and  density a r e  given by equations (B5)  and  (B6). 

The  speed of sound is used  in  the  determination of the flow properties at the  shock 
wave  and  the body surface.  Equation (27) is used  to  determine  the  speed of sound  in 
t e rms  of p  and  e  in  this  report.  The  derivatives of 7 which appear  in  equation (27) 
are obtained by differentiating  the  expressions  for 7 in  appendix B. The  results of this 
procedure are compared  with  the  data of Browne  in  figure 4(c). 

Perfect  gas  model.-  This  model is formulated  subject  to  the  assumptions  that  the 
ratio 7 = h/e is constant  and  that  the  temperature is given by the  equation 

where  the  exponents ?i and s" differ from one. It is shown in  appendix C that if  the 
entropy S is to  be a conserved  quantity,  the  ratio 7 and  the  exponents  and 
must  be  related by the  equation 

In  other  words,  only two of the  three  parameters 7, E, and can  be  chosen  indepen- 
dently. It is shown also  in  appendix C that  the  speed of sound for  this  model is given by 
the  relation 
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(c) Speed of sound. Data from  reference 18. 

Figure 4.- Concluded. 

Radiative  Transfer 

In order  to  determine  the  amount of thermal  energy which is absorbed by a fluid 
element, it is assumed  that  the  radiating  shock  layer  can  be  approximated by an infinite 
slab with  the  thickness of the  shock  layer at the  point  under  consideration. (See fig. 5.) 
The  distributions of the  thermodynamic  properties  across  the slab a r e  the  same as those 
along a normal  to  the  surface  through  the point. 

Both frequency-independent  (gray)  and  frequency-dependent  (nongray)  absorption 
coefficient  models are  treated.  The  Planck  mean  absorption  coefficient is used  for  the 
gray  model,  whereas a two-step  coefficient is used  for  the  nongray  model. One step  lies 
in  the  vacuum  ultraviolet  portion of the  spectrum (400A 5 X 5 1130A) and  the  other  covers 
the  near  ultraviolet,  visible,  and  infrared  portions of the  spectrum (1130A 2 X < w). A 
Planck  mean  averaging  procedure is used  to  determine  the  absorption  coefficients  for  the 
two spectral  bands. 

One-dimensional  radiating  shock  layer  model.-  The  equation  for  the  net  addition 
of heat  to a volume  element  due  to  monochromatic  radiation  can  be  obtained  from 
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Figure 5.- Schematic of slab used for  calculation of heat-flux 
and  net-heat-input  terms. 

equation (D14). This  equation is an  expression  for  the  net  monochromatic  heat  input  per 
unit  volume  for a one-dimensional  slab.  It was  derived  subject to the  assumptions  that 
the body surface  neither  reflects  nor  emits  radiation,  and  that  the  gas  in  the  free  stream 
neither  emits  nor  absorbs.  The  quantities I,(yb) and Ii(ys)  therefore  have  values of 
zero. When equation @14) is substituted  into  equation (D15), the following expression 
for Q(y) is obtained: 

* 

where B, is the  Planck  function 

E,(z) is an exponential  integral 
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and  A,(r,s) is the  optical  depth 

Consider an absorption  coefficient  model  with M steps: 

CY,= (vN 5 v 5 v N + ~ ; N  = 1,2,. . .,M) (41) 

The  integral of the  Planck  function  over a frequency interval is given 

-l sFvN+l V'VN B, dv = d[F(%) 7T - F ( h N  + 11 

where 

by the  equation 

(42) 

The  net  heat  input  for  an M step  nongray  absorption  coefficient  model is 

Equation (44) is used  to  determine  the  quantity Q in  equations (4) and (7). 
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Equations (D7) and (D8) can  be  combined  to  obtain an equation  for  the  heat f l u x  at 
the body surface q(yb): 

The  expression  for  the  heat  flux at the  surface  for  an  infinite  slab  and  an M step  absorp- 
tion  coefficient  model is written as 

Equations (44) and (45) are  integrated  numerically.  The  absorption  coefficients % 
a r e  used  in  tabular  form as functions of the  density p and the  temperature  T. 

Absorption  coefficient . - models.- " - ..= The  one-  and  two-step  models which a r e  used  in 
this report are constructed  from  the  more  complex  models of Olstad.  (See ref. 5.) The 
sources of radiation which are  treated  in  that  reference  include  the  following  groups: 
(1) atomic  lines, (2) N+ and O+ electron  recombination  in  the  vacuum  ultraviolet  portion 
of the  spectrum, and (3) molecular band systems,  free-free  electron  transitions,  the 
photoionization of 0, and  electron  recombination  in  the  visible  and  infrared  portions of 
the  spectrum. 

Olstad  determines  the  absorption  coefficients  for  electron  recombination  radiation 
in  the  vacuum  ultraviolet  portion of the  spectrum  from  the  absorption  cross  sections of 
Hahne  (ref. 20). The  data of Allen  (refs. 2 1  and 22) a r e  used  to  compute  the  absorption 
coefficients  for  the  radiation  sources  listed  in  groups 1 and 3. 

The  step of the  nongray  model  for  the  vacuum  ultraviolet  portion of the  spectrum 
(400 i  I X 5 1 1 3 0 i )  accounts  for  the  electron  recombination  radiation  in  that  spectral 
region.  The  radiation  from  this  part of the  spectrum is optically  thick  for all the  shock 
layers  treated  in  this  report  except  those  associated  with  spheres  with  radii of 1 foot or 
less. 

The  second  step of the  nongray  model  accounts  for  the  radiation  due  to  the  processes 
listed  in  group 3, the  atomic  lines  above 2000i,  and  the  wings of the  lines below 2000 i .  
The  radiation  due  to  these  processes  occurs  in  the  near  ultraviolet,  visible, and infrared 
portions of the  spectrum ( 1 1 3 0 i  5 X 5 m) and is optically  thin  for  the  cases  treated  in  this 
report. 
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(a) Gray model. 

Figure 6.- Absorption  coefficients  for  equilibrium  air. 

The  present  model  does  not  account  for  the  radiation  from  the  centers of the  lines 
below 2000i, which is optically  thick.  In  order  to  take it into  account, a model  with  more 
than two steps would have  to  be  employed.  The errors  encountered by neglecting  the 
radiation  from  the  line  centers are probably not severe  since  this  radiation  tends  to  be 
absorbed  quickly. 

The  gray  absorption  coefficient  model  which is used  in  this  report is shown graphi- 
cally  in  figure 6(a), and  the  nongray  model is shown in  figure 6(b). 

Starting Solution 

The  starting  solution is constructed by specifying  the  shock-wave  shape  and  surface 
pressure  distribution.  Since  the  shock wave is assumed  to  be  stationary  initially,  the flow 
properties at points  on  the  shock  wave  can  be  determined  from  the Rankine-Hugoniot rela- 
tions.  The  properties at points on the body surface are determined by using  the  specified 
pressure  distribution  and  assuming  that  the  entropy  and  total  enthalpy are conserved  along 
the body streamline.  The  pressure  and  the  velocity  components are determined at points 
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Figure 6.- Concluded. 

within  the  shock  layer  by  interpolating  the  values at the  shock  wave  and body surface 
linearly  along  lines  normal to the body surface.  The  density  and  enthalpy  profiles  along 
the  stagnation  streamline are determined  with a solution  similar  to  that  used by Goulard 
in  reference 1. This  solution is developed  in  appendix E. Similar  profiles are used 
along  the  other  lines  normal to the body surface.  The  values of the  stagnation-point 
enthalpy  which a r e  used  for  the  starting  solution are obtained by linearly  extrapolating 
the  values at the two neighboring  points  on  the  stagnation  streamline. (See appendix E.) 
The  correct  values  for  the  cases  treated  in  this  report are much  lower  than  the  extrapo- 
lated  values  since a radiation-cooled  layer  exists at the  stagnation  point  which is much 
thinner  than any practical  value of the  mesh  spacings which can  be  used.  The  use of the 
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correct  value of the  stagnation-point  enthalpy would lead  to  an  erroneous  broadening of 
the  radiation-cooled  layer  over  several  mesh  spacings  since  the  first-order  computa- 
tional  method  which is used  in  this  report  tends  to  reduce  steep  gradients  in  the  flow 
property  profiles  such as those  associated  with  the  radiation-cooled  layer. It has  been 
found  that  better  solutions  for  the flow field  are  obtained when the  extrapolated  value of 
the  stagnation-point  enthalpy is used,  although  the  radiation-cooled  layer is eliminated by 
this  process.  This  procedure  does not  affect  the  value  for  the  stagnation-point  heat  flux 
appreciably  since  the  radiation-cooled  layer is so thin. It should  be  noted  that  the  pres- 
ent  computational  method  adjusts  the flow properties at the  stagnation  point  much  more 
slowly  than  elsewhere.  Therefore,  the  starting  solution  for  the  stagnation  streamline, 
and  hence  the  extrapolated  starting  solution  for  the  stagnation  point,  must  be  determined 
as accurately as possible. 

RESULTS 

In this section,  calculations which are  determined with the  present  method  for both 
adiabatic  and  nonadiabatic flow are compared with those  obtained  with  other  techniques. 
The  stagnation  streamline  enthalpy  profiles  and  the  shock-layer  thickness  distributions 
for  spheres with different radii and the  same  flight  conditions  are shown,  and the  gray 
and  the  nongray  surface  heat-flux  distributions  for  these  spheres a r e  compared.  In  addi- 
tion,  the  effects of sphere  size,  free-stream  velocity,  and  altitude on the  nongray  surface 
heating  distributions  are  investigated.  The  free-stream  thermodynamic  properties which 
are used  in this report are based on the  atmospheric  model of reference 23. 

Illustrative  Calculation  for  Adiabatic Flow 

In order  to  demonstrate  the  accuracy of the  present  computational  method  and 
thermodynamic  model,  an  illustrative  calculation  for  adiabatic flow is made.  The  com- 
putation is made  for  the flow of equilibrium air past a sphere  traveling at 45 000 ft/sec 
(13.73 km/sec) at an  altitude of 200 000 ft (60.96 km) in  the  atmosphere of the  earth. 
The  mesh  spacings which a r e  used  are AY = 1/6 and Ah0 = 3.875O. 

The results of the  present  method are  compared  in  figure 7 with  those of Lomax 
and  Inouye (ref. 24), who use  the  inverse  method. It is seen  in  figure  7(a)  that  the  results 
of the two methods  for  the  shock-wave  and  sonic-line  locations are  in  close  agreement. 
The  present  method  yields a value of 6/rb = 0.0467 for  the  stagnation  streamline  shock 
detachment  distance,  whereas  the  inverse  method  gives  the  value 6/rb = 0.0479. The 
results  for  the  tangential  velocity  and  density  distributions at the  surface are shown in 
figure 7(b). The  distributions of these flow pr0pertie.s  along a line  normal  to  the body 
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(a) Shock and  sonic  line  locations. 

Figure 7.- Adiabatic flow about a sphere  traveling at 45 000 Wsec (13.73 km/sec) 
at  an  alt itude of 200 OOO ft (60.96 km). 

surface at 0 = 38.75' are given  in  figure  7(c). It should  be  noted  that  the  present 
method  computes  the  density less accurately  than  any of the  other flow properties. 

Sample  Calculations  for  Nonadiabatic  Flow 

The  gray  radiation  model is used for these  sample  calculations.  The  method  used 
to  obtain  the  initial  solutions  has  been  discussed  previously.  Equations (E27)  and  (E29) 
are used  to  determine  the  initial  stagnation  streamline  enthalpy  distribution. A one-step 
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Figure 7.- Continued. 
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(c)  Density  and  tangential  velocity  profiles  across  shock  layer at 0 = 38.75O. 

Figure 7.- Concluded. 
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absorption  coefficient  which  covers  the  spectral  range 400A 5 X < 03 is used for 
the  gray  radiation  model.  The  power-law  expression,  which is obtained  by curve 
fitting  the  data  presented  in  figure  6(a)  over  the  ranges 9 &- d 10-1 and 
10 000' K 9 T 9 16 000' K, is given by the  equation PO 

1.179  6.964 
cyp = 0.3060(e)  (2) cm-1 

The  dependence of temperature on enthalpy is assumed  to  be 

'l'he constant E in  equation (E27) is set equal  to  zero  since a one-step  absorption  coef- 
ficient is being  considered. 

Effect of mesh  spacing . size.- " - Sample  calculations a r e  made  for a sphere  with a 
radius of 5  feet (1.524 m)  traveling at a speed of 50 000 ft/sec (15.24 km/sec) at an alti- 
tude of 190 000 ft (57.91 km)  in  the  atmosphere of the  earth. 

The  influence of the  mesh  spacing  size on the  enthalpy  distribution is shown in  fig- 
ure  8. Calculations are presented  in  figure  8(a)  for AY = 1/14 and A 0  = lo, 2O, 4O, 

and 6'; the  solutions  for  the  enthalpy  distribution and the  shock-detachment  distance  are 
seen  to  converge as A 0  is decreased. In figure 8(b) resu l t s   a re  shown for A 0  = 2' 
and AY = 1/6,  1/10,  1/14,  and  1/18; the  results  are  seen  to  converge as AY is 
decreased,  although  the  convergence is not as strong  for AY as for AO. 

The  effects of the  size of the  mesh  spacings A 0  and AY on the  surface  heat- 
flux  distribution a r e  shown in  figures 9(a)  and  9(b), respectively.  There is a strong  ten- 
dency  for  these  distributions  to  converge as the  size of the  mesh  spacings is reduced. 
The  results  for  the  distributions  are  in  close  agreement  for AY = 1/14 and A 0  = 1' 
and 2'. For A 0  = 2' and AY = 1/14 and 1/18, the  results  coincide for 0 2 30' and 
show close  agreement  for 0 > 30°. 

On the  basis of the  results  presented  in  figures 8 and 9, the  mesh  spacings  for  the 
subsequent  calculations are chosen  to  be AY = 1/14  and A 0  = lo. 

Comparisons with other -___ methods.-  The  present  method  has  been  used  to  calculate 
two cases  which are  presented by Olstad  in  reference 4. Olstad  employs  the  optically 
thin  approximation  and uses  the  Poincarb-Lighthill-Kuo  method to make  the  calculations 
for  these  cases. 

The perfect-gas  thermodynamic  model is used to calculate  the  results of the  pres- 
ent  method.  The  free-stream  pressure is set equal  to  zero  and  the  quantity 7 = h/e 
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(a) Effect of A 0  for AY = 1/14. 
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Figure 8.- Effect  of  mesh  spacing  size on  gray  stagnation  streamline  enthalpy 
distribution  for a sphere  with a radius of 5 ft (1.524 m) traveling at 
50 000 f t /sec (15.24 km/sec) at  an  altitude of 190 OOO ft (57.91 km). 
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(a) Effect of A 0  for AY = 1/14. 
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(b) Effect of AY for A 0  = 2'. 

Figure 9.- Effect  of  mesh  spacing  size  on  gray  surface  heat-flux  distributions  for a 
sphere  with a radius of 5 ft (1.524 m) traveling at 50 000 W s e c  (15.24 km/sec) 
at an  altitude of 190 000 f t  (57.91 km). 
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is chosen so that  the  density at the  shock  wave is - = 0.06, the  value  used  in refer- 
P, 
P S  

ence 4.  The  dependence of temperature  on  the  density  and  pressure is of the  form 

601 T rxp- 
p.550 

The  density  exponent = 0.55 is the  same as the  enthalpy  exponent  used  in  reference 4, 
and  the  pressure  exponent  was  computed  from  equation (38). The  dependence of the 
absorption  coefficient  on  the  density  and  temperature is taken  to be 

ap - P 
.661T6.656 

Therefore,  the  absorption  coefficient  varies as h3  when the pressure is constant.  This 
variation  was  used  in  reference 4 for  the cases which are being  treated. 

Let  the  energy  depletion  parameter I? be  defined by the  equation 

where 6A is the  shock-detachment  distance  for  adiabatic flow.  The gases which are 
treated  have  the  parameters ap,s6A = 0.3, r = 0.02 and ap,s6A = 1, I ' =  2. 

The  results of the  present  method  for  the  stagnation  streamline  enthalpy  profiles 
are compared with those of Olstad  in  figure 10. The  agreement is reasonably good for 
both cases. The  results of the present  method  for  the  stagnation-point heat fluxes are 

- = 0.0032 and 0.0632 whereas  the  values  presented  in  reference 4 are 0.0028 and 

0.0574. The  present  method  gives  values of 6 = 0.9946A and O.797fjA for the shock- 
detachment  distances  for  the two cases, whereas  reference 4 gives  values of 0.9826A 

qst  

PCQVW 
- 3  

and 0.7326A. 

The  results of the  present  method  for  the  surface  heat-flux  distribution are com- 
pared  with  those of Wilson  and  Hoshizaki  (ref. 7) in  figure 11. The  case  which is treated 
is a sphere  with a radius of 5 feet (1.524 m)  traveling at 50 000 ft/sec (15.24 km/sec) at 
an altitude of 190 000 ft (57.91 km)  in  the  atmosphere of the  earth.  The  gray  radiation 
model is used. Two distributions  from  reference 7 are shown in  the  figure  because  the 
authors  use  upper bound and  lower bound absorption  coefficient  models  in  that  reference. 
It is seen  that  the  heat-flux  distribution  computed by the  present  method is very  similar 
to the  distribution of reference 7. 
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Figure 10.- Comparison of present  results  and  those of reference 4 for  gray 
stagnation-streamline  enthalpy  distribution. 
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Figure 11.- Comparison  of  present  results  and  those of reference 7 for  gray  surface 
heat-flux  distribution  for a sphere  with a radius of 5 ft (1.524 m )  travel ing at 
50 000 W s e c  (15.24 km/sec) at  an  altitude of  190 000 f t  (57.91 km). 
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Calculations  for  Spheres With  Different  Radii  and 

Different  Flight  Conditions 

The  thickness of the  shock  layer is roughly  proportional  to  the  radius of the body. 
Therefore,  the body size  governs  the  optical  depth of the  shock  layer.  The  flight  velocity 
determines  the  amount of energy  available  to  the  flow  field,  whereas  the  velocity  and  the 
free-stream  conditions  together  determine  the  magnitudes of the flow properties  behind 
the  shock  wave. 

Altitude, ." . 190 000 feet  (57.91  km);  velocity, 50 000 ft/sec (15.24 km/sec).-  Results 
for  spheres  traveling  in  the  atmosphere of the  earth at an  altitude of 190 000 feet 
(57.91 km) at a velocity of 50 000 ft/sec (15.24 km/sec) are presented  in  this  section. 
The effects of body size on the  stagnation  streamline  enthalpy  profile,  the  shock-layer 
thickness,  and  the  surface  heat-flux  distributions are investigated.  Spheres  with  the 
radii of 3  inches (0.0762 meter), 1 foot (0.3048 meter),  5 feet (1.524 meters),  and 
15 feet (4.572 meters) are treated. 

The  initial  solution  for  the  gray  cases  has  been  discussed  previously.  A  two-step 
absorption  coefficient  model is used  in  connection  with  equations  (E27)  and  (E29)  to  deter- 
mine  the  initial  solution  for  the  nongray  cases. Again, the  temperature is assumed  to 
vary as h.392. The  data  presented  in  figure 6(b) are used  to  obtain  the  power-law 
expressions for the  absorption  coefficient  model.  The  coefficient for the  step  which 
covers  the  spectral  range 1130A 5 h < 00 is written as 

1.163  5.498 
al = 0.1489(&) (2) cm-1 (4  7) 

where  the  temperature  T is given  in OK. For  the  cases  rb = 3  inches and rb = 1 foot, 
the  second  step  covers  the  spectral  range 400A 5 h 5 1130A. The  power-law  absorption 
coefficient  for this range is 

1.182  .469 
a2 = 110.9(,) (5) cm-1 

For  the  case with r b  = 5 feet, the  second  step  covers  the  spectral  range 
1020A I h 9 1130A. For  this  case,  the  radiation  for X < l020A is optically  thick. It is 
assumed  that  for these conditions  this  radiation,  which is absorbed by the flow field  very 
close  to  the point at which i t  is emitted,  does  not  affect  the  structure of the flow field 
appreciably  and  can  be  neglected.  The  power-law  absorption  coefficient  for  the  range 
lO20A I h 6 1130A is given  by  the  expression 
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For the case with rb = 15 feet, the  radiation  for X < 1 1 3 0 i  is optically  thick  and is 
neglected.  Therefore,  only  one  step is used  for  this case. 

1 .o 

.8 

Figure 12.- Effect of size on  gray  and  nongray  stagnation-streamline  enthalpy  distri- 
butions for spheres  traveling at 50 000 Wsec (15.24 km/sec)  at an altitude of 
190 000 ft (57.91 km). 

In  figure 12, the  enthalpy  distributions  along  the  stagnation  streamline are shown 
for  the  various cases. It is seen  that  the  effects of radiation  on  the  enthalpy are more 
pronounced  for  the  gray  model  than  for  the  nongray  model. As the  radius of the body is 
increased,  the  differences  in  the  gray  and  nongray  distributions  increase. 

The  variation of the  shock-layer  thickness  with  the  angle 0 is shown  in  figure 13 
for the  different  cases.  One  effect of body size is an  increase  in  the  deviation of the 
shock-layer  thickness  for  the  nonadiabatic  cases  from  that  for  the  adiabatic  case. When 
r b  = 3 inches,  there is virtually  no  difference  in  the  shock-layer  thickness  for  the  gray 
and  the  nongray  cases.  The  nongray  shock  layers are thicker  than  the  gray  ones  for  the 
cases  with 'b = 1 foot  and r b  = 15 feet. For the  case with 'b = 5 feet,  the  gray  shock 
layer  has  virtually  the  same  thickness as the  nongray  one  in  the  stagnation  region,  and  it 
is thicker  than  the  nongray  one  for  larger  values of the  angle 8. 
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Figure 13.- Effect of size  on  gray  and  nongray  shock-layer  thickness  distributions 
for  spheres  traveling at 50 000 ft/sec (15.24 km/sec) at  an  altitude of  190 000 f t  
(57.91 km). 

The  shock-detachment  distance is governed  largely by the  rate at which mass  is 
t ransferred out of the  stagnation  region. Along the  stagnation  streamline,  this rate is 
proportional to the  product of the  density  and  the  tangential  velocity  gradient.  The  den- 
sity is greater for the  gray  radiation  model  than  for  the  nongray  model at a given  point 
in  the  stagnation  region  because  the  density is inversely  proportional to the  enthalpy  and 
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the  enthalpy  for  the  gray  model is less than  that  for  the  nongray  model, as is shown in 
figure 12. For the case with rb = 5 feet, the  tangential  velocity  gradient  for  the  nongray 
model is greater  than  that  for  the  gray  model by an  amount  which is just enough to  com- 
pensate  for  the  difference  in  the  density.  Therefore,  the  shock-detachment  distances  for 
the two radiation  models are the  same  for rb = 5 feet. 

In figure 14, the  surface  heat-flux  distributions  for  the  gray  and  the  nongray radia- 
tion  models are compared.  Values  for  the  stagnation-point  heat  fluxes are given  subse- 
quently. It is seen  that  differences  in  the  distributions  for  the two models are small. 
There is a slight  tendency  for  the  differences  to  increase as the body radius is increased. 

The  gray  and  the  nongray  nondimensional  surface  heat-flux  distributions  presented 
in  figure 14 are compared  in  figures  15(a)  and 15(b), respectively,  to  determine  the effect 
of body size on  the  distribution  shapes. It is seen  that  this  effect is slight  for  both  radia- 
tion  models.  This  result is particularly  surprising  for  the  nongray  model  since  the rela- 
tive  contributions  from  the  different  parts of the  spectrum  vary  considerably as the body 
radius  varies. (See fig. 16.) For the case with r b  = 3  inches,  the  heat  flux  comes  pre- 
dominantly  from  that  part of the  spectrum  with X < 1130i.  The  contributions of the  two 
pa r t s  of the  spectrum are approximately  the  same  for  the case with rb = 1 foot.  The 
heat f l u x  from  that  portion of the spectrum  with X < 1 1 3 0 i  is only  about  10  percent of 
the  total  for  the  case  with  rb = 5 feet. For the case with rb = 15 feet, the  ultraviolet 
portion of the  spectrum  contributes less than 1 percent of the  total  heat  flux.  Therefore, 
a spectral  breakdown of this case is not  shown in  figure 16. 

Altitude,  140 000 feet (42.67 km);  velocity, 34 000 ft/sec (10.36 km/sec).-  Results 
for  spheres  traveling  in  the  atmosphere of the  earth at an  altitude of 140 000 feet 
(42.67 km) at a velocity of  34 000 ft/sec (10.36 km/sec) are presented  in  this  section. 
For the  flight  conditions  used  in  the  previous  section,  the  temperature  in  the  hotter  por- 
tions of the  shock  layers  varies  with  pressure  and  density as p.432/p-392.  The  hotter 
portion of the  shock  layer  provides  most of the  radiant  heat  which  strikes  the body su r -  
face. Since  the  heat  flux  depends  strongly  on  the  temperature, it might  be  expected  that 
different  flight  conditions  would  yield  different  heat-flux  distributions.  The  flight  condi- 
tions  which  are  used  in  this  section  are  chosen so that  the  temperature  in  the  shock  layer 
var ies  as p*810/p*794. The  nongray  surface  heat  flux is calculated  for  spheres  with 
radii of 3  inches  and 5 feet. 

~~. "~ ". - - - - - "~ ~ ~ . . - "~ ~ " - - .  "- " .~. 

In order  to  determine  the  initial  solution  with  equations (E27)  and  (E29), it is 
assumed  that  the  temperature  varies as h.794.  Equation (47) is used  to  obtain  the 
absorption  coefficient for the  spectral  range  1130i 2 X < 00 for   the  cases  with 
r b  = 3  inches  and  5 feet.  For the case with r b  = 3  inches, it is assumed  that  the  second 
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Figure 14.- Gray  and  nongray  surface  heat-flux  distributions  for  spheres  traveling at 
50 000 ft/sec (15.24 km/sec)  at  an  altitude of  190 OOO f t  (57.91 km). 
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(a)  Gray  radiation model. 

(b)  Nongray  radiation model. 

Figure 15.- Effect of size  on the  gray  and  nongray  surface  heat-flux  distributions  for 
spheres  traveling at 50 COO Wsec  (15.24 km/sec)  at  an  altitude of  190 000 f t  
(57.91 km). 
- 
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Figure 16.- Spectral  breakdown of the  nongray  surface  heat-flux  distributions  for 
spheres  traveling  at 50 OOO W s e c  (15.24 km/sec) at  an  alt i tude of 190 OOO f t  
(57.91 km). 
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(c) rb = 5 ft (1.524 m). 

Figure 16.- Concluded. 

step  covers  the  spectral  range 852A S X 5 1130A. The  absorption  coefficient  for this 
range is 

1.182 ,329 
02 = (33.15(:) ($4) cm-1 

The  radiation  for X < 852A is optically  thick  and is neglected. For the case with 
r b  = 5 feet, the  radiation  for X < 1130A is neglected. 

The  results  for  the  total  nondimensional  nongray  surface  heat-flux  distributions  for 
the two cases are shown in figure 17. For the  present set of flight  conditions, as with  the 
previous set, the  distributions are insensitive  to body sizes.  However, as with  the  pre- 
vious  flight  conditions,  the  contributions  to  the  heat  flux  from  the  portions of the  spectrum 
with X < 1130h  and X > 1130h  differ  for  the two cases. A spectral  breakdown  for  the 
case with r b  = 3  inches is shown  in  figure 18. A breakdown  for  the case with r b  = 5 feet 
is not  given  because  more  than 99 percent of the  heat  comes  from that portion of the  spec- 
t rum with X > 1130A. 

Effect of flight  conditions  on  surface  heat-flux  distribution.-  The  nongray  surface 
heat-flux  distributions  for  the two different sets of flight  conditions  for  spheres  with radii 

~ ~~~~ - ~ ~ " .~ " " 
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Figure 17.- Effect of size on  nongray  surface  heat-flux  distributions  for  spheres 
traveling at 34 OOO fVsec (10.36 km/sec) at  an  alt itude of  140 000 f t  
(42.67 km). 
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Figure 18.- Spectral  breakdown  of the  nongray  surface  heat-flux  distribution  for a 
sphere  with a radius of 3 in. (0.0762 m) traveling  at  34 OOO W s e c  (10.36 km/sec) 
at an  altitude of 140 000 ft (42.67 km). 
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Figure 19.- Approximate  analytic  solution  for  nongray  surface  heat-flux  distribution 
for  a  sphere  with a radius of 5 ft (1.524 m). 

of 5 feet are compared  in  figure 19. Since  the  variations of the  pressure,  the  density, 
and  the  shock-layer  thickness  with  the  angle 0 are very  nearly  the  same  for  the two 
cases, the  difference  in  the  heat-flux  distributions  must  be  due  to  the  differences  in  the 
dependence of the  temperature  on  the  pressure  and  density  and  in  the  dependence of the 
absorption  coefficient  on  the  density  and  temperature.  In  order  to  demonstrate  these 
effects, an  approximate  analytic  solution  for  the  surface  heat-flux  distribution is devel- 
oped  in  appendix F.  In figure 19 the  approximate  results  for  the  nondimensional  heating 
distributions  which are determined  from  equation (F9) show the  same  trends as the 
numerical  results.  The  approximate  solution  accounts  only  for  the  radiation  from  the 
optically  thin  portion of the  spectrum  with X > 1130A since  the  radiation  for X < 1 1 3 0 i  
is optically  thick  and is absorbed in the flow  field. It should be  mentioned  that  the  approx- 
imate results for  the  stagnation-point  heat  flux  which are determined  from  equation (F10) 
are greater  than  those  which are determined  numerically.  This  condition  occurs  because 
the  analytic  solution  accounts  for  absorption  only  in  an  approximate  fashion. For the case 
with vm = 50 000 ft/sec (15.24 km/sec) and h = 190 000 f t  (57.91 km),  equation (F10) 
yields a value of 0.660 for  the  nondimensional  stagnation-point  heat  flux qs t /2a l , sB(0)~s  4 

for X > 1130 i .  The  numerical  value  for  the  heat f l u x  for  this case is 0.527. For the 
case with ym = 34 000 ft/sec (10.36 km/sec)  and h = 140 000 ft (42.67 km),  the  analytic 
and  numerical results for  the  nondimensional  stagnation-point  heat  flux  for X > 1 1 3 0 i  
are 0.432 and 0.353, respectively. 
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The  exponents  and 2 in  equation (F9) are assigned  the  values 1.2 and 1.3, 
respectively,  for  both cases. For the  case with vm = 50 000 ft/sec (15.24 km/sec) 
and 6 = 190 000 f t  (57.91 km),  the  exponents E,, g, and  and  the  ratios 7, 
6(0)/rb, and pSt/ps have  the  values 2.3,  0.432,  0.392,  1.129,  0.0404, and 1.87, respec- 
tively.  The  respective  values  for  these  parameters  for  the case with 9 ,  = 34 000 ft/sec 
(10.36 km/sec)  and = 140 000 f t  (42.67 km) are 6.9,  0.810,  0.794,  1.147,  0.051, 
and 1.29. 

Both the  altitude  and  the  velocity  differ  considerably  for  the two cases  which are 
compared  in  figure 19. In order  to  determine  the  individual effects of altitude  and  veloc- 
ity,  additional  calculations  were  made  for  the  nongray  radiation  model  and a body with a 
radius of 5 feet. The  results  for  the  total-surface  heat-flux  distributions  for  these cal- 
culations  and  those  presented  in  figure 19 are compared  in  figure 20.  For a given  flight 
velocity,  the  effect of altitude  on the surface  heat-flux  distribution is small.  The  velocity 
influences the heat-flux  distribution  chiefly  through  the  equation of state, which  governs 
the  dependence of the  temperature  on  the  pressure  and  density. As stated  previously, 
this  dependence is p.432/p.392 and p.810/p.794, respectively,  for  velocities of 
50 000 ft/sec (15.24 km/sec)  and 34 000 ft/sec (10.36 km/sec). For velocities of 
41 000 ft/sec (12.50 km/sec),  the  dependence of the  temperature on the  pressure  and 
density  varies  from  approximately p-432/p.392 on  the axis to  p -810 / p  -794 for  large 
values of the angle 0. 

Figure 20.- Effect of f l ight speed and  altitude  on  nongray  surface  heat-flux  distribution 
for a sphere  with a radius of 5 ft (1.524 m). 
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Although the  shapes of the  total  nongray  heat-flux  distributions are very  s imilar  
for a given  flight  velocity  and  different  altitudes,  the  relative  contributions  from  the two 
portions  spectrum to the  heat  flux  vary  with  altitude. For a velocity of 50 000 ft/sec 
(15.24 km/sec),  the  contributions  to  the  heat  flux  from  the  optically  thin  portion of the 
spectrum  with X > 1 1 3 0 i  are approximately 90 percent  and 60 percent,  respectively, 
for  altitudes of 190 000 f t  (57.91 km)  and 220 000 f t  (67.06 km).  The  optically  thin por- 
tion of the spectrum  contributes  approximately 100 percent  and 65 percent of the  surface 
radiative  heat  flux  for a flight  velocity of 4 1  000 ft/sec  and  altitudes of 140 000 ft and 
220 000 f t .  The  respective  contributions  for a velocity of 34 000 ft/sec and altitudes of 
140 000 f t  and 190 000 f t  are approximately 100 percent and 85 percent. 

The  effect of the  shape of the  nondimensionalized  heat-flux  distribution on the  total 
radiative  heating  to  the body can  be  seen by comparing  the  ratio of the  integral of the 
heat  flux  over  the  surface  area  with 0 S 44’ to  the  product of this area and  the 
stagnation-point  heat  flux  for  the  cases  shown  in  figure 20. This  ratio, which is written 
as 

s,”,””” q(O)sinO  dO 

r e 4 4 0  

qst 3,, sin 0 dO 

has  values of 0.32,  0.48, and 0.63, respectively,  for  flight  velocities of 34 000 ft/sec, 
4 1  000 ft/sec,  and 50 000 ft/sec.  These  numbers  demonstrate  that  comparisons of 
stagnation-point  heating  rates  may  not  yield  correct  comparisons of the  total  heating 
rates for  an  entry  vehicle.  This  observation  has  been  made  for  the  case of transparent 
shock  layers by several   writers.  (For example,  see  ref. 25.) 

Stagnation-point  heat flux.- The  present  results for the  gray  stagnation-point 
heating rates are compared  with  those of Thomas (ref. 2) and  Olstad (ref. 4) in  figure 21. 
These rates are made  nondimensional by dividing by the  factor ~ C Y ~ , ~  6 A o“ which is 

the  gray  heat  flux  obtained  from  an  isothermal  slab  with  the  thickness of the  adiabatic 
shock  layer when absorption is neglected.  The  quantity  against  which  the rates a r e  
plotted is the  gray  energy  depletion  parameter I?, which is defined by equation (46). The 
results of Thomas  and  Olstad  have  been  interpolated  for a flight  velocity of 50 000 ft/sec 
(15.24 km/sec)  and  an  altitude of 190 000 f t  (57.91 km)  in  the  atmosphere of the  earth. 
It is seen  that  the  present  results  agree  more  nearly  with  those of reference 2 than  with 
those of reference 4. 

. ~- 

The results fcr the  nongray  stagnation-point  heating r a t e s   a r e  given  in  table I. 
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Figure 21.- Gray stagnation-point  heat-flux distribution for  spheres traveling at 50 000 fVsec (15.24 krn/sec) 
at  an altitude of 190 000 17 (57.91 krn). 

TABLE I.- NONGRAY  STAGNATION-POINT  HEAT  FLUX 

Altitude f Sphere   r ad ius  I Heat f l u x  

feet 

190 000 
190 000 
190 000 
190 000 
220 000 

140 000 
220 000 

140 000 
140 000 
190 000 

- I  

m e t e r s  I feet [ m e t e r s  I Btu/ft2-sec I kW/m2 
~~ 

Velocity,  50 000 ft/sec (15.24  km/sec) 

57 910 

10  630 4.572  15.00 57 910 
7 530  1.524  5.00 57 910 
4  840 .3048  1.00 57 910 
1 806  0.0762 0.25 

2 114  1.524 5.00 67  060 

Velocity,   41 000 ft/sec (12.50  km/sec) 

54  900 
85  500 

120  600 
24 000 

42  670 1 :::: 1 ::::: -p 740 6  380 67  060  562 
292 000 

Velocity,  34 000 ft/sec (10.36  km/sec) 

42 670 

1.524 

5.00 42  670 
0.0762  0.25 

31 300 
57  910 1.524  2  760 5.00 

1 
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.CONCLUSIONS 

On the  basis of the  results  presented,  the  following  conclusions  can  be  stated: 

1. Converged  solutions  for  the  radiative  heat  flux  which  impinges  on  the  surface of 
an entry  vehicle  can  be  obtained  with a first-order  time-dependent  finite-difference 
method if  the  grid is refined  sufficiently. 

2. Only minor  differences  occur  in  the results for  the  nondimensional  surface  heat- 
flux  distributions  for  the  gray  and  nongray  absorption  coefficient  models. 

3. The  shape of the  nondimensional  heat-flux  distributions is a strong  function of 
the  flight  velocity  and a weak  function of the  size of the body and  the  altitude. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Langley  Station,  Hampton, Va., February 19,  1969, 
129-01-03-11-23. 
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APPENDIX A 

THE ENERGY EQUATION 

Equations (1) to (4) can  be  combined so that  the  energy  equation  can  be  written as 

P d t - d t -  
dh dp - Q 

If the  enthalpy  h is replaced by the  right-hand  side of equation (15) and e is assumed 
to  be a function of p  and  p,  this  equation  becomes 

From  the  f irst  and  second  laws of thermodynamics, 

de = 2 dp + T dS 
P2 

where S is the  entropy. From equation (A2), 

If e is assumed  to  be of the  form e = e(p,p(p,S)),  the  derivative  (ae/ap)S  can  be 
written as 

($s = (%)p + ($)p(%)s 

Equating  the  right-hand  sides of equations (A3) and (A4) and  noting  that 

yields 



APPENDIX  A 

By using  equation (A5), equation (Al)  can  be  written as 

The  derivatives  (ae/ap)p  and  (ae/ap)p  can  be  determined  in  terms of p, e, 

and  y(p,e)  by  replacing e by the  expression 

1 e =  - P 
qP,e(p,p,q - 1 

and  differentiating.  The  derivative  (ae/ap)p is written as 

L 

and  the  derivative  (ae/ap)p is 
r 

J 

1 

With the  aid of equation (A7), the  energy  equation (A6) can  be  written as 

Equations (A5),  (A7), and (A8) can  be  used  to  write  an  expression  for  the  square of the 
speed of sound as 
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CURVE FITS FOR  THE THERMODYNAMIC FUNCTIONS 

?@,e) AND T(P,P) 

The  data of Allison  (ref.  17)  and  Browne  (ref.  18)  have  been  used  to  construct  curve 
fits for  the  thermodynamic  functions y(p,e) = and  T(p,p). 

The  function 7 = - for  equilibrium air for 10-4 5 f2- 5 10  and A- 5 1500 is e given by the  following  equations: PO RTO 

7 = 1.405  (loglo & 5 0.801) (Bl) 

3.255 - 2.278 loglo - 

1 - 0.822 loglo - e 
< loglo R,To 5 2.300; loglo 6 2 '9 (B2) 

RTO 

0.1366 - 0.0366 loglo  0.0833 - 0.0248 loglo  &)loglo RT, e 
- .  ~ - . " 

- 1.943 - 0.032 loglo fL 
PO 

3.255 - 2.278 log 
e < loglo - 5 2.300;  log < 
RTO 10 Po 

033) 
1 - 0.822 log e 10 RT, 
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(0.3274 + 0.0091  loglo -) P - (0.1342 + 0.0016 loglo -)loglo P RT e 
PO P O  0 

- 2.708 - 0.0320 loglo e 

< loglo - 
RTO 

e 5 3.176) (B4) 

The  temperature (T in OK) for  equilibrium air for 6.00 X 5 2 S 2.00 X 10 

3 P  and  10- 2 - 5 10-1 is given by the following  equations: 
PO 

PO 

loglo T = 4.211 + 0.068% - 0.392 

loglo T = 4.203 + 0.068 loglo p, P 

where 

R, = 0.94 1 loglo - - 1.970 P 
PO 
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THE PERFECT GAS MODEL 

It is assumed  that  the  ratio = - is constant. By use of this  assumption,  the h 
e 

energy  equation 

T d S = d h   - - d p  1 
P 

and  equations (18) can  be  combined  to  obtain 

(7 - l ) T  dS = -dp  1 - T E d p  
P P2 

If the  equation  for  the  temperature is of the  form 

where the exponents  and s" are different from one,  equation (Cl) can be  written as 

Let  subscripts 1, 2, 3, and 4 denote  the  properties  at the points  shown  in  figure 22. 

Figure 22.- Schematic of dependence of entropy on pressure and density. 
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When equation (C2) is integrated  from  the states pl, p1 to p3, p3 along  the 
paths  1,2,3  and 1,4,3 as shown in  the  figure,  the  following  results are obtained: 

and 

Noting  that p2 = pl,  p2 = p3, p4 = p3, and  p4 = pl,  one  can  equate  the  right-hand  sides 
of equations (C3) and obtain 

(!!" p2 1-E +"-)(17 p3 1-% p4 1-E 

1 s  1-s 1-s 1-s" 1 - E 1 - s ) = O  
p2 p3 p4 

Since  the first factor  in  equation (C4) does  not  vanish  in  general,  the  following  relationship 
must  exist  between 7, 5, and g: 

l - S " = y " ( l - E )  

From equation  (Cl),  the  expression  for  the  speed of sound for the  perfect  gas  model 
can  be  obtained.  This  equation  can  be  rewritten as 

d p = y " : d p + ( y " - l ) p T d S  

The  equation for the  square of the  speed of sound is 
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APPENDIX D 

THE RADIATION INTENSITY,  HEAT  FLUX, AND NET HEAT INPUT  PER UNIT 

VOLUME FOR AN INFINITE, ONE-DIMENSIONAL SLAB OF GAS 

Radiation  Intensity 

The  differential  equation  for  the  radiation  intensity I, for a one-dimensional  slab 
is 

where  y is the  coordinate  measured  along a line  normal  to  the  slab,  and @ is the 
angle  between  the  line of propagation of radiation  and  the  y-axis.  This  coordinate  system 
is shown in  figure 23. The  y  coordinate  increases  from  the body to  the  shock,  and  the 
y coordinates of the body and  the  shock  are  yb  and  ys,  respectively. 

Figure 23.- Geometry of one-dimensional  radiating slab. 

The  integration  factors  exp sec @A,(yb,y)] and  exp  sec(a - @)Av(y,ys] are used [I [ 
to  integrate  equation (Dl) for 0 S @ 5 n/2 and n/2 5 @ 5 n, respectively,  where  the 
integral  Av(r,s) is given by equation (40). If it is assumed  that  the body surface  does 
not reflect,  the  solution  to  equation (Dl) can  be  written as 
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(0 5 @ 5 ~ / 2 )  (D2a) 

q X Y , @ )  = qYS)exP 

+ sec(T - cu,(s)B,(s)expEsec(r - @)Av(y,sgds ( ~ / 2  5 @ 5 T )  (D2b) 

where It(Yb) and I;(ys) are the  intensities of the  radiation  entering  the  slab  from  the 
body and  the  gas  in  the free stream,  respectively. 

Heat Flux 

In  general, the monochromatic  heat  flux  across  an  elemental  area is given by the 
equation 

If an  infinite  slab is being  considered,  the  heat  flux  across  an  elemental area which is 
parallel to  the  sides of the slab is given by the  equation 

I t ( Y , @ ) C O S  9 s in  @ d@ + I;(Y,@)cOs @ sin @ d@  d* 034) 

*=O 1 
where I) is the  azimuthal  angle.  Since 1: and I; are independent of the  angle +, 
the  integration with respect  to  that  variable is straightforward. 

It  can  be  seen  from  equations (D2) that I: and I; are functions of s ec  @ and 
sec(a - @), respectively. When sec  @ and  sec(r - @) in  the  first  and  second  integrals 
with  respect  to @ i n  equation  (D4),  respectively, are replaced by w, that  equation  can 
be  written  in  the  form 

SJY) = 2n 

L 1 

L 
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o r  
r 

By using  equation  (41)  to  replace  the  integrals  with  respect  to w with exponential  inte- 
grals,  equation (D5) can  be  written as 

It  can  be shown from  equations (39)  and  (40)  that 

By using  equations (D6), the  equation  for  the  monochromatic  heat  flux is 

The  total  radiative  heat  flux  can  be  obtained by integrating  the  monochromatic  heat 
flux  over all frequencies: 
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Net Heat  Input  to a Volume  Element 

The  net  heat  input  to a volume  element  due  to  monochromatic  radiation is equal  to 
the  negative of the  divergence of the  monochromatic  heat-flux  vector -V 0 q,: 

" 

For an  infinite  slab,  QV(y) is related  to q,(y)  by the  equation 

The  expression which is used  in  this  report to determine  the  net  heat  input  can  be 
obtained  either  from  the  right-hand  side of equation (D9) o r  from  equation (D10). The 
latter  equation is used  here. 

When equation (D7) is integrated by parts,  the  following  expression  for  qV(y) is 
obtained: 

From  equations (39)  and (40), it can  be  shown  that 
\ 

By using  equations (D12) and  Leibnitz's  rule  for  differentiating  an  integral,  equation (D11) 
can  be  differentiated  with  respect  to  y  to  obtain 
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By substituting  the  right-hand  side of equation (D13) into  equation (D10) and  using 
equations (D6) on  the  resulting  expression,  the  following  expression  for  the  net  monochro- 
matic  heat  input  for a volume  element  in  an  infinite  slab is obtained: 

The  net  heat  input  due  to  radiative  transfer is obtained by integrating Q,(y) over 
all frequencies: 

/-8 v=-J 

The  monochromatic  heat f l u x  can  be  expressed  in a form  other  than  equation (D14) 
by integrating  equation (D13) once by parts and  substituting the result  into  equation (D10). 
The  resulting  equation is 
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STAGNATION STREAMLINE SOLUTION FOR GRAY  AND 

NONGRAY RADIATION MODELS 

In  this  analysis, 
streamline. By using 
line  can  be  written as 

it is assumed  that  the  pressure is constant  along  the  stagnation 
this  assumption,  the  energy  equation  along  the  stagnation  stream- 

dh v=m pu - = 
dy IV=o " d' 

where  y is the  length  coordinate  measured  along  the  stagnation  streamline. 

Goulard's  stretched  coordinate  x (ref. l ) ,  which is defined by the  differential 
expression 

dx = ($r'2 dy 

is used  in  this  treatment.  As  in  reference 1, the  mass  flux  normal to the  surface is 
approximated by the  equation 

where p, and v, are  the  density  and  magnitude of the  velocity  in  the  free  stream  and 
6~ is the  shock  detachment  distance  for  the  adiabatic  case.  Equations ( E l ) ,  (E2), and 
(E3)  can  be  combined  to  yield 

It is assumed  that  the  absorption  coefficient  can  be  approximated with a step  func- 
tion of the  form  given  in  equation (41). Therefore,  the  divergence of the  heat  flux is given 
by the  expression: 

It is further  assumed  that  the  first two steps  are  optically  thin  and  the  remainder are 
optically  thick so that 
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CLN > 1 (N = 3,4, . . .,M) 

For  the  optically  thick  steps,  the  expression for the  divergence of the  heat  flux,  given by 
equation (D14) or  (D16), is simplified  with  the  Rosselind  approximation  (ref. 11) to yield 

Q N = -  471 BN,s z p y j  " a ( BN] (N = 3,4, . . .,M) (E6) 
36A ( w , s 6 A )  a? %l ay BN,s 

where 

and 

BN = sv=vN+l B, dv 
v= VN 

It  has  been  explained  previously  that  the  quantities  It(yb)  and I;(ys) in  equations (D14) 
and (D16) are  assigned  values of zero.  In  order  to  approximate  equation (D16) for  the 
optically  thin  steps, it is assumed  that Bv(s) = Bv(y)  in  the  integral  terms of that  equa- 
tion.  The  result is written as 

where 

The  exponential  integrals  in  this  equation are approximated by the  simple  exponential 
functions 

E2(z) = e  - f l Z  

The  exponential  functions,  in  turn, are approximated by the first two t e rms  of their  Taylor 
expansions.  Therefore,  the  expressions  for  the  divergence of the  heat  flux for the  opti- 
cally  thin  steps are written as 
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(N = 1,2)  (E10) 

Equation (40) is used  to  obtain  the  quantity AN(yb,ys) in   equat ions  (~10) .  ~n this treat- 
ment,  the  contributions  to  the  divergence of the  heat f l u x  from  the  optically  thick  steps 
Q3, Q4, . . .,QM a r e  neglected.  This  procedure  can  be  justified if the  factors 
B N , ~ / ( Q N , ~ ~ A )  and B N , ~ c Y ~  6 ) in  equations  (E6)  and  (ElO),  respectively,  satisfy  the 

following  inequalities: 
7s A 

Bl , sp l , s6A) '  B2,s(%!,s6A) " 
BN, s 

( QN, s "A> (N = 3,4, . . .,M) 

By using  equations  (E5),  (ElO),  and  the  preceding  assumption,  equation  (E4)  can  be  written 
as 

In  this  treatment,  it is assumed  that 7 and  p a r e  constant  along  the  stagnation 
streamline.  Therefore, it is seen  from  equations (18) that  the  density  can  be  expressed  in 
te rms  of the  enthalpy as 

h P=S 
ps 

An expression  for  the  temperature  in  terms of the  enthalpy  can  be  obtained by combining 
equations  (37),  (E12),  and  the  assumption of constant  pressure  to  yield 

s 
N 

$ = (&) 
It is assumed  that  the  absorption  coefficients  can  be  approximated by power-law  expres- 
sions of the  form 

(N = 1,2) (E14) 

Equations  (E12),  (E13),  and (E14) can  be  combined  to  yield 
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It is shown in  figure 24 that  the  function F f$ - given by equation (43) can be approxi- 

mated by the  expression 

F(E) = f(Ejg 
for the  range  1.15 2 log ~ 2 0.85 where f = 2.42 x 105  and = 7.45. Equa- hv 

lo kT 
tions (E8) and (42) can be used  to  write B1 and B2 as 

,1 

J 

OS0 i / 

-1.0 

-2.0 

-3 -0 

-4.0 

- 

- 

Approximate s o l u t i o n ,  
equat ion (E16) 

Exact s o l u t i o n ,  
equat ion (M (43) 

-5.0 I I I 1 I 
1.2 1.1 1.0 0.9 0.8 

log10 ($1 

(E17a) 

(E17b) 

Figure 24.- Approximate solution  for  integral of Planck  function. 
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where 

L 

From equations  (E13)  and  (El?), it follows  that 

and 

By using  equations  (E12),  (E15),  (E19),  and  (E20),  equation  (Ell)  can  be  written as 

where 

rl = 4 p l , s 6 A ) ~ s 4  

PmKohs 

If a new dependent  variable 5 of the form 

($l+;-k+h)g 

5 =  

68 
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is introduced  in  equation  (E21)  and  the  roles of < and  the  independent  variable x are 
reversed,  the  energy  equation  can be written as 

dx 1 -+-x=O 
d< 1 +- C 

where 

- (b"z - El + g)s - z2 + z1 
N =  

(4 + K1)s" - a"1 - - 1 
2 

and 

c =  

(f4 + 

Equation  (E24)  can  be  integrated  by  parts  to  yield 
f l  

- 

C 1 +, 
- 

where  the  hypergeometric series is written as 

Two of the  parameters  in  equation  (E26) for e are not known initially.  These  param- 
eters are the  optical  depths A1(yb,ys) and A2 Yb,Ys . Therefore,  the  final  solution 
given  by  equation  (E27)  must  be  determined by iteration.  Once a preliminary  enthalpy 

0 
69 



APPENDIX E 

distribution  has  been  obtained,  the  next  approximate  values  for  the  optical  depths are 
determined  from  the  equations: 

The  process is repeated  until  the  successive  values  for  the  optical  depths  converge.  The 
final  distribution h(y) is determined  from  the  equation 

It can  be  seen  that  equation  (E27)  yields  the  solution  h = 0 at  the  stagnation  point  x = 0. 
A  nontrivial  value for the  stagnation-point  enthalpy is obtained in  this  treatment by extrap- 
olating  the  values of the  enthalpy  h at x = 0 . 0 5 6 ~  and x = 0 . 1 6 ~ .  

The  results  for a gray  case  and a two-step  nongray case are compared with those of 
Olstad (ref. 4) i n  figure 25. 

.2 I - Results 0; ref. 4 

0 .2 .r, .6 .8 1.0 

- - - -. Present results 

“1 

Y 

Figure 25.- Comparison of results of present initial solution and  those of reference 4 for 
stagnation-streamline  enthalpy distribution. 
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APPROXIMATE SOLUTION FOR SURFACE  HEAT  FLUX 

This  solution is derived  for  shock  layers  for which most of the  radiation  which 
strikes  the body surface  comes  from  the  optically  thin  portion of the  spectrum  with 
X > 1130A. Equation (45) for  the  radiative  heat f l u x  to  the body surface is approximated 
by the  expression 

The  dependence of the  temperature on the  pressure  and  density  and  the  dependence of the 
absorption  coefficient on density  and  temperature are given by equations (37) and  (E14), 
respectively.  Therefore,  the  equation  for  the  heat f l u x  can  be  written as 

d s  

The  shock-layer  thickness is approximated 

6(0)  = S(O)(cos 

by the  expression 

0) -2 

where is a positive  number,  and  the  pressure  and  density are approximated by expres- 
sions  linear  in Y of the  forms 

P o =  Y cos2(0 - E )  + (1 - Y)cos20 
PS 

and 

The  variation of the  density  along  the body surface is determined by assuming  that 7 is 
constant  and  that  the  flow  along  the  surface is isentropic.  These  conditions are fairly 
good approximations for the  cases  treated.  Since  the  angle E in  equation (F3) is small, 
it is assumed  that 
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cos  E = 1 

Equations (F2) and (22) are used  to  obtain  an  approximate  expression  for  sin E :  

By use of equations (F5) and (F6), equation (F3) can  be  written as 

The  integration of the  linear  expression  for  the  density, which is given by equation (F4), 
can  be  performed  exactly.  The  result is written as 

Bv using  equations (Fl),  (F2),  (F7), and (F8), the  approximate  expression  for 
” 

heat  flux can be written as 

l + Z l  

, - p: (cos 0) 

- (2) 
l+Zl-(4+fi1)y 2/71 

the  surface 

The  stagnation-point  heat f l u x  is given by the  expression: 
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Equation (F9) contains  eight  parameters.  The  exponents E, g, %I, and 61, and  the 

ratio = - can  be  obtained  from  thermodynamic  and  absorption  coefficient  data.  The 
present  results show that  the  exponent a which  governs  the  variation of the shock-layer 

thickness  with  cos 0 can be obtained  from  adiabatic  results.  The  ratios 

and  pSt/ps  can be determined  from a stagnation  streamline  treatment. For cases   fo r  
which the stagnation  streamline  density  profile  varies  nonlinearly  near  the body surface, 
a least-squares  procedure  should be used  to  obtain  the  best  linear fit for  the  density 
distribution. 

h 
e 

6 (0) 
k b  f)(Ofl 

The  present  treatment  has not  been  extended  to  include  the  optically thick radiation 
from  the  part of the  spectrum  with X < 1130A because  most of the  radiation  in  this  spec- 
tral region which strikes  the body surface is emitted  close  to  the  surface.  This  radiation 
is affected  strongly  by  the  density and temperature  gradients  near  the body surface, which 
are not  represented  well by this  treatment. 
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